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INTRODUCTION: 
Prostate carcinoma (PCA) initially responds to androgen deprivation. However, it usually reoccurs in a form 
that is unresponsive to further hormonal manipulations. This latter form of PCA, termed androgen independent 
cancer, inexorably progresses resulting in the demise of the patient. The mechanism responsible for 
development of androgen independent cancer is unknown. However, some clues may be found in the response 
of PCA cells to the cytokine interleukin-6 (IL-6). Specifically, IL-6 and IL-6 receptor are expressed in PCA. 
Furthermore, inhibition of IL-6 in prostate cell culture diminishes PCA cell proliferation demonstrating the 
presence of an autocrine mechanism of IL-6 activity. Finally, IL-6 has been shown to both activate the 
androgen receptor (AR) in the absence of androgen and sensitize the AR to androgen. These observations have 
important implications regarding androgen-deprivation therapy. In the current work we are exploring the 
hypothesis that IL-6 contributes to the progression of PCA, that is observed post-androgen deprivation, through 
enhancing AR activity. We will test our hypothesis by the following combination of in vitro and in vivo 
objectives: Objective I: Determine the mechanism through which IL-6 sensitizes AR to androgen. Objective II: 
Evaluate if inhibition of IL-6 diminishes PCA proliferation in a rodent model. Objective III: Determine if IL-6 
contributes to PCA progression post-androgen deprivation In summary, these experiments should help identify 
the extent and mechanism of IL-6's role in PCA progression. They are designed to elucidate if IL-6 promotes 
androgen hyperresponsive tumors or truly androgen-independent tumors. These data should provide a rationale 
for target IL-6 for inhibiting PCA progression. 

BODY: 
Statement of Work Tasks for the Initial Funding Period: 
Task 1. Determine the mechanism through which IL-6 sensitizes AR to androgen. (months 1-18) 

• perform Western and PCR analyses to determine if IL-6 increases AR expression (months 1-3) 
• perform transfection experiments to determine if IL-6 increases AR gene activation (months 4-9) 
• perform transfection experiments to determine if IL-6 increases AR transactivation strength (months 

10-12) 
• perform bandshift assays to determine if IL-6 increases nuclear levels of AR (months 13-14) 

These aims have all been accomplished and were presented in the previous progress report and 
manuscript #1 that accompanied last year's progress report. 

We have now extended these studies to evaluate the role that signal transduction plays in IL-6- 
mediated activation of the AR. Specifically, we have stably transfected several prostate cancer cell lines 
with the AR fused to green fluorescent protein. We could then visualize that IL-6 induces nuclear 
translocation (Fig. 1). 

Figure 1. IL-6 induces AR 
nuclear translocation.  PC-3 
cells transfected with AR-GFP 
fusion protein were treated with 
IL-6 and 3 hours later examined 
under a fluorescent microscope. 
Note nuclear localization of 
strong fluorescence. 

Untreated IL-6 (10 ng/ml) 



Task 2. Produce reagents needed for Tasks 3 and 4 (months 1-12) 

• prepare anti-murine IL-6 and anti-murine isotype antibodies for Tasks 3 and 4 by inoculating mice 
with hybridoma, collecting ascites fluid, purifying antibodies (months 1-4) 

• maintain tumor in nude mice until ready for transplantion [20 mice] (months 1-12) 

We have accomplished these aims as reported in the previous progress report and used these materials as 
reported in manuscript #2 that accompanied last years progress report. 

Task 3. Evaluate if inhibition of IL-6 diminishes PC A proliferation in a rodent model [80 mice] (months 10-21) 

• initiate tumor model in sham operated or orchiectomized nude mice and administer IL-6 and isotype 
antibody (months 10-16) 

• euthanize mice, analyze tumor tissue for growth, AR/IL-6 expression and androgen sensitivity 
(months 17-21) 

We have performed an in vivo study using anti-IL-6 to inhibit development of prostate tumor growth. These 
results were reported in the last annual report and the appended Manuscript #2.   We are now performing 
experiments in which we are testing the ability of blocking IL-6 (with antibody) to prevent progression of 
prostate cancer. We have established tumors in animals and then castrated the animals and initiated anti-IL-6 or 
isotype control antibody. 

KEY RESEARCH ACCOMPLISHMENTS: 

• Creation of several prostate cancer cell lines that are stably transfected with androgen receptor (AR)- 
GFP fusion protein. 

• Visualization using the AR-GFP cell lines that IL-6 induces nuclear translocation. 
• Identification that several kinase inhibitors can block IL-6-mediated AR nuclear translocation. 
• Initiated tumor establishment/castration and anti-IL6 experiments. 
• Beginning to explore the contribution of IL-6 to prostate cancer bone metastasis. 
• We have identified a variety of transcription factors activated by IL-6 in prostate cancer cells using an 

array technology that allows us to identify transcription factors in nuclear extracts. 

REPORTABLE OUTCOMES: 
1. MANUSCRIPTS 

a. Evan T. Keller, Jian Zhang, Carlton R. Cooper, Peter C. Smith, Laurie K. McCauley, Kenneth J. 
Pienta and Russell S. Taichman. Prostate carcinoma skeletal metastases: Cross-talk between 
tumor and bone. Cancer Metastasis Reviews 20:333-349, 2001. 

b. Keller ET. Theroleof osteoclastic activity in prostate cancer skeletal metastases. Drugs Today, 
38:91-102, 2002. 

2. ABSTRACTS 
a. Susan Korenchuk, Kenneth J. Pienta, Carlton R. Cooper, Evan T. Keller. Osteoblastic 

characteristics of a panel of xenografts derived from primary and metastatic prostate cancer 
lesions. American Association of Cancer Research Annual Meeting, 2002. 

b. Peter C. Smith, Susan Korenchuk, Kenneth J. Renta, Evan T. Keller. Interleukin-6 and androgen 
receptor cofactors in prostate cancer xenografts and cell lines. American Association of Cancer 
Research Annual Meeting, 2002. 



CONCLUSIONS: 
Our in vivo results document that IL-6 mediates a role in prostate cancer progression in vivo in an animal model. 
Furthermore, our in vitro data show that signal transduction cascades are required for IL-6 to mediate the 
activation of AR. The identification of signal cascades provides potential targets to block IL-6's contribution to 
prostate cancer. 
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Abstract 

The majority of men with progressive prostate cancer develop metastases with the skeleton being the most prevalent 
metastatic site. Unlike many other tumors that metastasize to bone and form osteolytic lesions, prostate carcinomas 
form osteoblastic lesions. However, histological evaluation of these lesions reveals the presence of underlying osteo- 
clastic activity. These lesions are painful, resulting in diminished quality of life of the patient. There is emerging 
evidence that prostate carcinomas establish and thrive in the skeleton due to cross-talk between the bone microen- 
vironment and tumor cells. Bone provides chemotactic factors, adhesion factors, and growth factors that allow the 
prostate carcinoma cells to target and proliferate in the skeleton. The prostate carcinoma cells reciprocate through 
production of osteoblastic and osteolytic factors that modulate bone remodeling. The prostate carcinoma-induced 
osteolysis promotes release of the many growth factors within the bone extracellular matrix thus further enhanc- 
ing the progression of the metastases. This review focuses on the interaction between the bone and the prostate 
carcinoma cells that allow for development and progression of prostate carcinoma skeletal metastases. 

1. Introduction 

Prostate carcinoma is the most frequently diagnosed 
cancer in men and the second leading cause of cancer 
death among men in the United States [1]. The most 
common site of prostate carcinoma metastasis is the 
bone with skeletal metastases identified at autopsy in 
up to 90% of patients dying from prostate carcinoma 
[2-4]. Skeletal metastasis results in significant com- 
plications that diminish the quality of life in affected 
patients. These complications include bone pain, 
impaired mobility, pathological fracture, spinal cord 
compression and symptomatic hypercalcemia [5-7]. 
Despite advances in the diagnosis and management 
of prostate carcinoma, advanced disease with skele- 
tal metastasis remains incurable. Current therapeutic 
modalities are mostly palliative, and include hormonal 
therapy, pharmacological management of bone pain, 
radiotherapy for pain and spinal cord compression [8], 
various chemotherapy regimens, and the use of bispho- 
sphonates to inhibit osteoclast activity [9]. In spite of 
the severe complications of prostate carcinoma skeletal 

metastasis, there have not been many advances in the 
therapeutic arena to prevent or diminish these lesions. 
It is critical that a solid understanding of the patho- 
physiology of prostate carcinoma skeletal metastatic 
process is developed to provide the basis for creating 
strategies to prevent or diminish their occurrence and 
associated complications. A preponderance of evi- 
dence suggests that establishment and progression of 
prostate carcinoma bone metastases is dependent on 
interaction between the bone microenvironment and 
the prostate carcinoma cell through both soluble and 
cell-membrane bound bioactive factors. In this review, 
we will summarize some of the cross-talk mechanisms 
between bone and prostate carcinoma. 

2. The effects of bone on prostate carcinoma 
metastasis 

In agreement with the 'seed and soil' theory of metas- 
tases espoused by Paget [10], the predilection of 
prostate carcinoma to establish metastases in bone as 
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opposed to other organs suggests that the bone microen- 
vironment offers a fertile soil for prostate carcinoma 
growth. Prior to interacting on the bone cells and bone 
matrix, the prostate carcinoma cells must enter the bone 
compartment. This is accomplished by several general 
mechanisms that include chemotaxis from the circu- 
lation, attachment to bone endothelium, extravasation, 
and invasion. The bone microenvironment is a com- 
plicated mixture of mineralized and non-mineralized 
bone matrix and endothelial, hematopoietic, immune, 
and bone marrow stromal cells. Each of these com- 
ponents of the bone microenvironment may contribute 
to the establishment of prostate carcinoma metas- 
tases through provision of chemotactic, angiogenic, 
adhesion and growth factors. 

2.1. Chemotaxis 

When prostate carcinoma cells are injected adjacent to 
adult human bone implanted in SCID mice, the prostate 
carcinoma cells to migrate to adult human bone [11]. 
This observation provides evidence that bone provides 
chemotactic factors for prostate carcinoma cells. This 
is further supported by the observation that bone under- 
going active resorption facilitated adhesion [12] and 
chemotaxis [13,14] of tumor cells to bone compared 
to non-resorbing bone. Collagen products appear to 
be one component of bone that induces tumor chemo- 
taxis [15]. The factors through which bone induces 
chemotaxis are not clear. However, low glycosylated 
osteonectin was found to be an active chemotaxic fac- 
tor in crude bone extracts that promoted chemotaxis of 
human prostate epithelial cells and increased the inva- 
sive ability of human prostate carcinoma cells [16]. 
In contrast with this observation, purified fibronectin, 
but not crude bone extracts induced migration of the 
prostate carcinoma DU-145 cell line [17]. Cell line 
specificity may account for these differences. Epider- 
mal growth factor induced migration of the TSU-prl 
prostate carcinoma cell line [18]. Since EGF is present 
in medullary bone, this observation suggests that it 
may act as a chemotactic factor for bone metastases. 
Finally, the Rho-kinase inhibitor, Y-27632, inhib- 
ited in vitro chemotactic migration to bone marrow 
fibroblast conditioned media and metastatic growth in 
immune-compromised mice of highly invasive human 
prostatic cancer (PC3) cells [19]. This observation 
suggests that modulation of kinase activity may prove 
fruitful in inhibition of skeletal metastasis. 

In addition to the above substances, which typi- 
cally are not considered chemotactic factors, prostate 

carcinoma cells may commandeer the normal leuko- 
cyte bone marrow homing mechanism using the 
chemokine pathway [20], Chemokines are classified 
based upon the relative position of cysteine residues 
near the NH2-terminus into four major families: 
CC,CXC,C,CX3C (as reviewed in [21]). Chemokines 
activate receptors that are members of the large family 
of seven-transmembrane G protein-coupled proteins. 
In addition to the role that chemokines have in cell 
migration, they play significant roles in normal devel- 
opment, inflammation, atherosclerosis and angiogene- 
sis. The rapidly increasing knowledge of chemokines 
has begun to impact many aspects of tumor biology 
including modulation of proliferation, angiogenesis 
and immune response to tumor (as reviewed in [22]). 

An important role for chemokines may be to reg- 
ulate metastatic behavior. Localization in tissues and 
migration to target organs are essential steps in the 
pathobiology of metastasis which strongly support the 
analogy to hematopoietic cell homing. In this context, 
the CXC chemokine stromal-derived factor (SDF-1; 
CXCL12) and its receptor, CXCR4 appear to be crit- 
ical molecular determinants for these events [23,24]. 
This has been substantiated in gene knockout inves- 
tigations [25,26] and by the demonstration that level 
of CXCR4 expression correlates with the ability of 
human hematopoietic progenitors to engraft into nude 
mice [26]. In the bone marrow, SDF-1 is constitutively 
produced by osteoblasts, fibroblasts and endothe- 
lial cells [27]. However, not all vascular endothelial 
cells express SDF-1, suggesting that organ-specific 
expression SDF-1 may account for the selectivity of 
metastases to target certain organs [28]. 

Several lines of evidence suggest that SDF-1 con- 
tributes to the pathogenesis of prostate carcinoma 
metastases. Inhibition of chemokines diminished 
in vitro proliferation of PC-3 cells [29] and anti- 
CXCR2 antibody inhibited IL-8-stimulated migration 
of PC-3 cells in vitro [30]. These studies suggest that 
chemokines contribute to prostate metastatic patho- 
physiology. This possibility is reinforced by the obser- 
vation that CXCR4 is expressed in normal prostate 
tissues, albeit at low levels [31], as well as sev- 
eral neoplasms that invade the marrow (e.g., breast 
cancers, Burkitt's lymphoma, leukemias) [31-33]. 
Furthermore, several prostate carcinoma cell lines 
express CXCR4 mRNA, and SDF-1 increased migra- 
tion of these cells in vitro [34]. It was recently demon- 
strated that normal breast tissues express little CXCR4, 
whereas breast neoplasms express high levels of 
CXCR4 [35,36], and antibody to CXCR4 blocked the 
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metastatic spread of the tumors to the bone in an exper- 
imental metastasis model [35]. Taken together, these 
data suggest that SDF-1 and CXCR4 are likely critical 
regulators of prostate carcinoma metastasis to bone. 

2.2. Attachment to endothelium 

Cell adhesion plays a vital role in cancer metasta- 
sis. In fact, the ability of cancer cells to adhere to 
organ-specific cells and components may be a crit- 
ical regulator of their metastatic pattern. A cancer 
cell in the circulation initially interacts with the 
organ's microvascular endothelium and subsequently 
the organ's extracellular matrix (ECM) components 
[37,38]. Cell adhesion molecules (CAMs) expressed 
on both the cancer and endothelial cells mediate these 
interactions. CAMs expressed on the endothelial cells 
are regulated by an organ's microenvironment, which 
results in CAM expression specific to each organ [39]. 
The organ-specific composition of ECM proteins such 
as laminin, fibronectin, and vitronectin that are recog- 
nized by CAMs expressed on cancer cells contribute 
significantly to organ-specific metastasis [40,41]. 

It has been proposed that prostate carcinoma metas- 
tasis to bone is mediated, in part, by preferential 
adhesion to bone marrow endothelium as opposed 
to endothelium from other sites [42,43]. Two stud- 
ies demonstrated that prostate carcinoma cells adhered 
preferentially to immortalized human bone marrow 
endothelial (HBME) cells as compared to human 
umbilical vein endothelial cells (HUVEC), immortal- 
ized human aortic endothelial cells (HAEC-I), and 
immortalized human dermal microvascular endothe- 
lial cells (HDMVEC) [42,44]. This observation was 
confirmed in another study that demonstrated prefer- 
ential adhesion of PC-3 cells to HBME cells as com- 
pared to HUVECs and lung endothelial cells, Hs888Lu 
[45]. Interestingly, this adhesion was enhanced when 
HBME cells were grown on bone ECM components 
[44]. The PC-3 cell line was used as a model for prostate 
carcinoma in these studies because it was derived 
from a bone metastasis. To determine the CAMs 
involved in prostate carcinoma (PC)-HBME inter- 
action, galactose-rich-modified citrus pectin (MCP) 
and several antibodies to known CAMs expressed 
on HBME cell monolayers, were used in adhesion 
assays. MCP was used because it was reported to 
interfere with interactions mediated by carbohydrate- 
binding proteins such as galectins [46]. The data 
demonstrated that MCP and antibodies to galectin- 
3, vascular cell adhesion molecule (VCAM), CDlla 

(alpha-L), CD 18 (beta-2), and leukocyte functional 
antigen-1 (LFA-1) pectin, reduced PC-3 cell adhe- 
sion to HBME cell monolayers [42]. This observation 
suggests that carbohydrate-binding proteins, VCAM, 
alpha-L, beta-2, and LFA-1 may be partially involved 
in prostate carcinoma cell adhesion to HBME cells. 
Beta-1 integrins expressed on HUVEC were demon- 
strated to mediate PC-3 cell adhesion to this endothe- 
lial cell line [47]. Surprisingly, the beta-1 integrins 
expressed on HBME cells were not involved in PC-3 
cell adhesion to HBME cell monolayers [48]; how- 
ever, beta-1 integrins, expressed on PC-3 cells, did 
mediate its interaction with HBME cell monolayers 
[45]. Hyaluronan and galactosyl receptor, a cell sur- 
face C-type lectin expressed on PC-3 cells, were also 
shown to mediate PC-HBME interaction [49,50]. 

The ability of metastatic prostate cells to adhere to 
the bone matrix may also contribute to prostate car- 
cinoma frequent metastasis to bone matrix [51,52]. 
Kostenuik demonstrated that PC-3 cells adhered to the 
collagen type I in the bone matrix. This adhesion was 
mediated by alßl expressed on PC-3 cells and was 
upregulated by transforming growth factor-jß (TGF-ß), 
a major bone-derived cytokine [53]. Festuccia and col- 
leagues [52] showed that osteoblast-conditioned media 
containing TGF-jß, modulated the PC-3 interaction 
with ECM proteins, including collagen type I. These 
results provide evidence that TGF-/J, present in the 
bone marrow, can influence prostate carcinoma cell 
adhesion to the bone matrix by modulating surface 
expression of selected integrins. 

2.3. Growth factors 

The calcified bone matrix is replete with putative 
prostate carcinoma growth factors including insulin- 
like growth factors (IGF), bone morphogenetic proteins 
(BMP), fibroblast growth factors (FGF) and transform- 
ing growth factor (TGF)-beta, which are released upon 
resorption of bone [54,55]. Furthermore, experimental 
evidence that resorption of calcified bone matrix pro- 
motes tumor growth was suggested by the observation 
that conditioned media for bone cultures undergoing 
resorption stimulated cancer cell growth of a variety of 
tumor cell lines [56]. Taken together, these data suggest 
that inhibiting bone resorption will diminish cancer 
growth by decreasing growth factors availability in the 
bone microenvironment. 

Several purified factors from bone matrix have 
been demonstrated to stimulate prostate carcinoma 
cell growth in vitro [57-59]. For example, IGF-I 
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and IGF-II are important mediators of prostate carci- 
noma growth (as reviewed in [60,61]). Prostate carci- 
noma cells have IGF receptors [62] and proliferate in 
response to IGF [57]. Transfection of LNCaP cells with 
FGF-8 expression vector induced an increased growth 
rate, higher soft agar clonogenic efficiency, enhanced 
in vitro invasion, and increased in vivo tumorigenesis 
[58]. The source of these growth factors is diverse. For 
example, osteoblast-derived factors influence prostate 
carcinoma growth, adhesion, and motility [16,17,63]. 
Additionally, bone marrow stromal cells, as opposed 
to non-skeletal fibroblasts, induced prostate carcinoma 
cell growth in vitro and in vivo [64—66]. As research 
continues on the extracellular matrix of bone, it is very 
likely that additional prostate carcinoma growth factors 
will be discovered. 

3. The effect of prostate carcinoma on 
the bone: Osteoblastic 

3.1. Prostate skeletal metastases are 
mixed osteoblastic and osteolytic lesions 

Once in the bone, prostate carcinoma tumors have 
pathobiology that appears to be somewhat unique to 
cancer skeletal metastases. Specifically, prostate car- 
cinoma skeletal metastases are most often character- 
ized as osteoblastic (i.e., increased mineral density at 
the site of the lesion) as opposed to osteolytic. Other 
tumors, such as breast cancer, can form osteoblastic 
lesions; however, these occur less frequently [67,68]. 
In spite of the radiographic osteoblastic appearance it 
is clear from histological evidence that prostate car- 
cinoma metastases form a heterogeneous mixture of 
osteolytic and osteoblastic lesions although osteoblas- 
tic lesions predominate [69-72]. Sites of prostate carci- 
noma bone metastases are often demonstrated to have 
increases in osteoid surface, osteoid volume, miner- 
alization rates [73,74]. Recent evidence shows that 
osteoblastic metastases form on trabecular bone at 
sites of previous osteoclastic resorption, and that such 
resorption may be required for subsequent osteoblastic 
bone formation [75,76]. Clinical evidence demon- 
strates increased systemic markers of both bone pro- 
duction and bone resorption in prostate carcinoma 
patients [77,78] in addition to bone histomorphome- 
tric findings of increased indices of bone resorption 
[71]. These findings suggest that prostate carcinoma 
induces bone production through an overall increase 
in bone remodeling, which in the non-pathologic state 

is a balance between osteoclastic resorption of bone 
and osteoblast-mediated replacement of resorbed bone 
(as reviewed in [79-81]). In the case of prostate carci- 
noma, it appears the induction of osteoblast-mediated 
mineralization outweighs the increase in osteoclast 
resorption resulting in overall formation of osteoblas- 
tic lesions. The osteoblastic lesions result in over- 
all weakening of the bone for the following reasons; 
mature, healthy bone is formed of lamellar bone, which 
allows for tight packing of collagen bundles and opti- 
mum bone strength. In contrast, prostate carcinoma 
induces production of woven bone, which is composed 
of loosely packed, randomly oriented collagen bundles 
that produce bone with suboptimal strength [82,83]. 
Thus, the combination of underlying osteolysis and 
production of weak bone leads to a predisposition 
to fracture. The mechanisms through which prostate 
carcinoma cells promote bone mineralization remain 
poorly understood. 

3.2. A variety of factors may contribute to 
prostate carcinoma-mediated bone 
mineralization 

Prostate carcinoma produces osteoblastic factors that 
mediate their effect through activation of the osteoblast 
transcription factor Cbfal in the osteoblast precursor 
[84]. This suggests that induction of osteosclerosis 
occurs through normal osteoblast differentiation path- 
ways. In addition to this observation, the prostate car- 
cinoma cell itself demonstrates increased expression 
of Cbfal an the ability to mineralize in vitro, suggest- 
ing that it directly contributes to osteosclerosis [85]. 
Many factors that have direct or indirect osteogenic 
properties have been implicated in prostate carci- 
noma's osteogenic activity (Table 1) (as reviewed in 
[86, 87-89]). Although, initially identified as a non- 
defined osteoblastic activity from prostate carcinoma 
cells in vitro [90], many specific factors have been 

Table 1. Osteogenic factors produced by cancer cells 

Factor Reference 

Bone morphogenetic proteins (BMP) [93,169] 
Endothelin-1 (ET-1) [94,136] 
Insulin-like growth factors (IGF) [231,232]. 
Interleukin-1 and -6 [233,234] 
Osteoprotegerin (OPG) [100,101] 
Parathyroid hormone-related peptide (PTHrP) [96,97] 
Transforming growth factor-^ (TFG-£) [99] 
Urinary plasminogen activator (urokinase) [235] 
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identified that may promote osteoblastic lesions. Some 
of these factors, such as bone morphogenetic pro- 
teins (BMP) [91-93] andenodothlin-1 (ET-1) [94] may 
directly stimulate differentiation of osteoblast precur- 
sors to mature mineral-producing osteoblasts [95] or 
induce osteoblast protein production [93]. Other factors 
such as parathyroid hormone-related protein (PTHrP) 
may work through inhibition of osteoblast apoptosis 
[96,97]. Additionally, there are proteins that may work 
indirectly to enhance bone production, such as the ser- 
ine proteases, prostate specific antigen (PSA) and uri- 
nary plasminogen activator (uPA), which can activate 
latent forms of osteogenic proteins, such as transform- 
ing growth factor-^ (TFG-ß [98,99]. Finally, some 
molecules, such as osteoprotegerin (OPG) [100-102] 
and ET-1 (in a dual role with its osteoblast-stimulating 
activity) [103] can enhance osteosclerosis through 
inhibiting osteoclastogenesis. Other tumor types, such 
as osteosarcoma, are also known to produce a variety 
of osteoblastic factors [104-106]. With such a large 
number of factors, it is difficult to determine which 
the key factor is, and most likely several of these 
osteogenic factors work in concert to produce maximal 
bone production. 

3.2.1. Parathyroid hormone related protein (PTHrP) 
PTHrP was originally identified as a tumor-derived 
factor responsible for humoral hypercalcemia of malig- 
nancy (HHM). It has limited homology with the 
endocrine hormone, parathyroid hormone, sharing 7 
of the first 13 N-terminal amino acids, but otherwise 
is dissimilar and immunologically distinct [107]. PTH 
AND PTHrP bind to the same receptor (the PTH-1 
receptor) and evoke the same biological activity due to 
similarities in their steric configurations at the region 
of 25-34 amino acids. Patients with solid tumors and 
hypercalcemia have increased serum PTHrP in 80% of 
the cases, emphasizing the impact of this peptide to 
increase bone resorption and renal tubular resorption 
of calcium [107]. Subsequent to its characterization 
in HHM, PTHrP was found to be produced by many 
normal tissues including, epithelium, lactating mam- 
mary gland, and cartilage where it has an autocrine, 
paracrine, or intracrine role [107]. PTHrP plays a criti- 
cal role in the development of the skeleton as evidenced 
by its lethality upon gene ablation and the severe skele- 
tal chondrodysplasia found in these animals [108]. 
These studies have led to the conclusion that PTHrP in 
cartilage functions to accelerate the growth of cartilage 
cells and to oppose their progression to a terminally 
differentiated cell [109]. 

Many features of PTHrP make it an attractive candi- 
date for influencing prostate carcinoma growth. PTHrP 
is produced by normal prostate epithelial cells, from 
which prostate carcinoma arises, and PTHrP is found 
in the seminal fluid [87,110]. PTHrP has been immuno- 
histochemically identified in prostate carcinoma tissue 
in patients with clinically localized disease [111], is 
found in higher levels in prostate intraepithelial neo- 
plasia than in normal prostate epithelium, is found in 
higher levels in prostate carcinoma than in benign pro- 
static hyperplasia [112,113], and is found in human 
metastatic lesions in bone [114]. There is also evidence 
that PTHrP can regulate malignant tumor growth in an 
autocrine manner in human renal cell carcinoma [115], 
enhance breast cancer metastasis to bone [116,117], 
and act as an autocrine growth factor for prostate car- 
cinoma cells in vitro [118]. Recent evidence indicates 
that expression of nuclear-targeted PTHrP can protect 
prostate and other cells from apoptosis [114,119], bind 
RNA [120], and act as amitogen [121,122]. PTHrP pro- 
duction by primary prostatic tumors is associated with 
increased tumor size and rate of growth in an animal 
model [114] suggesting that PTHrP acts in autocrine 
or intracrine mechanisms to promote tumor growth. 
In contrast, in this same model and in an intracar- 
diac injection model of prostate carcinoma, PTHrP was 
not associated with an increase in metastatic poten- 
tial [83,114]. This suggests that PTHrP is not impor- 
tant in the process of metastasis to bone but once in 
the bone microenvironment where target cells with 
receptors are present (osteoblasts); it may play a crit- 
ical role in the bone response to prostate carcinoma. 
Of particular interest to prostate carcinoma, PSA has 
been shown to cleave PTHrP leading to an inactiva- 
tion of the PTHrP-stimulation of cAMP which is a 
key pathway for the actions of PTHrP in bone [123]. 
More recent studies indicate that in colon cancer cells, 
PTHrP enhances adhesion of cells to type I collagen 
but not fibronectin or laminin [124]. All these data 
suggest that PTHrP has a critical role in the local 
bone microenvironment of metastatic prostate carci- 
noma; but what this precise role is has yet to be 
determined. 

3.2.2. Endothelin-1 
ET-1 is a member of the ET family which is composed 
of ET-1, -2, and -3. The ET family members are syn- 
thesized as a 203 amino acid precursor peptide that 
is cleaved to a 21 amino acid peptide with the same 
two characteristic disulfide bridges [125]. Initially 
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identified as a potent vasoconstrictor, ET-1 interacts 
with cell surface ETA and ETB receptors to induce 
a variety of responses including modulation of cell 
growth and fetal development (as reviewed in [125]). 
ETs are found in a variety of tissues including vascular 
endothelium, parathyroid gland, mammary tissue, and 
macrophages [125]. 

The role of ET-1 in bone remodeling is controversial. 
For example, in the murine osteoblast precursor cell, 
MC3T3-E1, El inhibits differentiation, reduces both 
alkaline phosphatase activity and osteocalcin expres- 
sion and diminishes in vitro mineralization suggesting 
that ET-1 will diminish bone production [126,127]. In 
contrast, ET-1 has been shown to inhibit bone resorp- 
tion [128], induce collagen synthesis [129] and osteo- 
pontin and alkaline phosphatase production [130,131] 
in a variety of osteoblastic cell lines. The conflict- 
ing results may be due to differences in cell lines, 
particularly with regards to ET receptor expression. 
Although these in vitro data are in apparent conflict, the 
in vivo data support that ET-1 promotes bone formation 
[132]. Specifically, administration of an ETA receptor 
antagonist in mice resulted in reduced bone mass [132]. 

ET-1 is secreted by normal prostate epithelial cells 
into the ejaculate [133-135] and is now considered a 
putative mediator of prostate carcinoma pathophysi- 
ology (as reviewed in [136]). The ectopic expression 
of ET-1 in the bone metastatic site by prostate car- 
cinoma cells may enable ET-1 to influence the bone 
remodeling process locally. This is supported by the 
report that para-tibial injection of an amniotic cell line 
overexpressing ET-1 induced new bone formation in 
the tibiae of mice, which was diminished by blockade 
of ETA receptor [137]. Additionally, administration of 
an ETA receptor antagonist diminished breast cancer- 
induced bone production in a murine model [138]. 
Furthermore, co-incubating the androgen-independent 
prostate carcinoma cell lines DU-145 and PC-3, but not 
the androgen-responsive cell line LNCaP, with bone 
slices induced ET-1 expression from the prostate car- 
cinoma cells [103]. The DU-145 and PC-3 cell lines 
also induced osteoclastogenic activity that was blocked 
by anti-human ET-1 antibody. Taken together, these 
reports suggest that ET-1 may contribute to prostate 
carcinoma metastases-induced osteoblastic lesions. In 
apparent conflict with these models, is the observa- 
tion that serum ET-1 levels are elevated in people with 
Paget's disease, which is characterized by low bone 
mineral density secondary to increased osteoclastic 
activity [139]. 

3.2.3. Bone morphogenetic proteins 
BMPs are members of the transforming growth factor 
(TFG)-/S superfamily. More than 30 BMPs have been 
identified to date [140]. While originally discovered 
because of their ability to induce new bone formation, 
BMPs are now recognized to perform many functions, 
particularly in the role of development, such as apop- 
tosis, differentiation, proliferation and morphogene- 
sis (as reviewed in [141-143]). BMPs are synthesized 
as large precursor molecules that undergo proteolytic 
cleavage to release the mature protein, which form 
active hetero- or homodimers [144,145]. BMPs bind 
to receptors (BMPR-IA and -IB) and a BMP type II 
receptor (BMPR-II), which induces Smad phosphory- 
lation [146] resulting in modulation of gene regulation. 
Target genes of BMPs include osteoblast proteins such 
as OPG [147] and the osteoblast-specific transcription 
factor Cbfa-1 [148,149]. Several proteins that antag- 
onize BMP action have been identified. For example, 
noggin and gremlin inhibit BMP-2, -4 and -7 by binding 
to them [150-152]. Furthermore, the BMPs themselves 
regulate their own inhibitors in an apparent negative 
feedback mechanism [153,154]. 

Many in vitro studies have demonstrated that BMPs 
induce osteogenic differentiation including the ability 
of BMP-7 (also called osteogenic protein-1; OP-1) 
to induce osteogenic differentiation of newborn rat 
calvarial cells and rat osteosarcoma cells [155-157]. 
The BMPs' osteogenic properties appear to be spe- 
cific to the differentiation stage of the target cells. 
Specifically, BMPs can induced uncommitted stem 
cells [155,158,159] and myoblasts [160] to express 
osteoblast parameters such as alkaline phosphatase 
or osteocalcin expression [79,161]; whereas, BMPs 
do not stimulate mature osteoblasts or fibroblasts 
[158,162-164] to increase expression of these proteins. 
Examination of genetically modified mice provides fur- 
ther evidence of the importance of BMP in bone devel- 
opment. The bmp7homozygous null condition in mice 
is a postnatal lethal mutation and is associated with, 
in addition to renal and ocular abnormalities, retarded 
skeletal ossification [165]. In contrast, bmp6 null mice 
are viable and fertile, and the skeletal elements of 
newborn and adult mutants are indistinguishable from 
wildtype [ 166]. However, careful examination of skele- 
togenesis in late gestation embryos reveals a consistent 
delay in ossification strictly confined to the develop- 
ing sternum. Finally, mice with mutations of the bmp5 
gene have skeletal abnormalities and inefficient frac- 
ture repair [167]. Taken together, these data provide 
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evidence that BMPs are important regulators of the 
osteogenesis. Thus, dysregulation of their expression in 
the bone microenvironment would most likely impact 
bone remodeling. 

A few studies have examined the expression of 
BMPs in normal and neoplastic prostate tissues. 
Using Northern analysis, Harris et al. [92] examined 
BMP-2, -3, -4 and -6 mRNA expression in human 
normal prostate and prostate carcinoma cell lines. 
They found that normal human prostate predomi- 
nantly expressed BMP-4. The androgen-dependent 
non-metastatic LNCaP human prostate carcinoma cell 
line produced very low to undetectable levels of BMPs. 
Whereas, the aggressive androgen-independent PC-3 
cell line expressed very high levels of BMP-3 and 
slightly lower levels of BMP-2, -4 and -6 compared 
to normal cells, but much higher than LNCaP cells. 
In support of these results, Weber et al. [168], using 
PCR analysis, identified 16 (73%) of 22 prostate car- 
cinoma samples that were positive for BMP-7 mRNA 
compared to eight (57%) of 14 normal prostate tissue 
samples. In another PCR based analysis, Bentley et al. 
[169], found that several BMPs were expressed in both 
benign and malignant prostate tissue and in the PC3 and 
DU145 prostate carcinoma cell lines. BMP-6 expres- 
sion was detected in the prostate tissue of over 50% of 
patients with clinically defined metastatic prostate ade- 
nocarcinoma, but was not detected in non-metastatic 
or benign prostate samples. In another study focused 
on BMP-6 mRNA and protein expression, Barnes et al. 
[170] observed that BMP-6 was produced by normal 
and neoplastic human prostate (radical prostatectomy 
specimens and human carcinoma cell lines DU145 and 
PC3). However, BMP-6 mRNA and protein expression 
was higher in prostate carcinoma as compared with 
adjacent normal prostate, with higher-grade tumors 
(Gleason score of 6 or more) having greater BMP-6 
immunostaining than the lower-grade tumors (Gleason 
score of 4 or less). These results were consistent with 
a later study by Hamdy et al. [171], who reported that 
BMP-6 mRNA expression was detected exclusively in 
malignant epithelial cells in 20 of 21 patients (95%) 
with metastases, in 2 of 11 patients (18%) with local- 
ized cancer, and undetectable in 8 benign samples. 
In addition to BMP, there have been several reports 
that prostate carcinoma expresses BMP receptors. It 
appears that as prostate carcinoma progress, the cells 
down-regulate their own expression of BMP receptors 
[172,173], which may be a protective mechanism as it 
has been demonstrated that BMP-2 can inhibit prostate 

carcinoma cell proliferation [174]. Taken together, 
these observations demonstrate that prostate carci- 
noma cells produce increasing levels of BMPs as they 
progress to a more aggressive phenotype and suggest 
that the up-regulation of BMP expression in prostate 
carcinoma cells localized in the bone is a critical com- 
ponent of the mechanism of development of osteoblas- 
tic lesions at prostate carcinoma metastatic sites. 

4. The effect of prostate carcinoma on 
the bone: Osteolytic 

Although the osteoblastic component of prostate car- 
cinoma metastases has received attention, limited 
research has been performed on the osteoclastic aspect 
of prostate carcinoma. Similar to the reports for breast 
cancer bone metastases [175,176], several lines of evi- 
dence suggest that resorption of bone is an important 
mediator of prostate carcinoma bone metastases. For 
example, administration of bisphosphonates, inhibitors 
of osteoclast activity, to patients with prostate carci- 
noma bone metastases relieves bone pain and lowers 
systemic indices of bone resorption [177-179]. Fur- 
thermore, administration of osteoclast inhibitors such 
as OPG or bisphosphonates prevents tumor establish- 
ment or diminished tumor burden in animal models 
[76,180-182]. It is not clear if bisphosphonates have 
a direct antitumor effect [183-185] or inhibit tumor 
growth through its ability to diminish osteoclast activ- 
ity [186,187]. In some instances, it may be a combi- 
nation of activities. As described above, in addition to 
serum levels of bone resorption markers being elevated 
in men with prostate carcinoma skeletal metastases, the 
lesions usually are demonstrated to have histological 
evidence of osteoclast activity. Thus, osteoclast activ- 
ity may play an important role in development and 
progression of prostate carcinoma metastases. Prostate 
carcinoma cells secrete a variety of factors that may 
promote bone lysis, such as interleukin-6 (as reviewed 
in [188]) and PTHrP. However, it appears that these 
factors mediate their osteolytic effects through induc- 
tion of a key pro-osteoclastogenic molecule, receptor 
activator of NFATB ligand (RANKL). 

4.1. Receptor activator ofNFkB ligand-OPG axis 

A member of the tumor necrosis factor family, RANKL 
is initially expressed as a membrane anchored mole- 
cule; however, a small fraction of RANKL is released 
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through proteolytic cleavage from the cell surface 
as a soluble 245 amino acid homotrimeric molecule 
(sRANKL) [189]. Both soluble and membrane bound 
RANKL promote osteoclast formation and activation 
by binding to RANK on the osteoclast precursor mem- 
brane [189-193]. 

In addition to RANKL and RANK, another key 
modulator of osteoclastogenesis is osteoprotegerin 
(OPG)(also known as osteoclastogenesis inhibitory 
factor-OCIF) [102,194]. OPG serves as a decoy 
receptor that binds RANKL and thus blocks its abil- 
ity to bind to RANK and induce osteoclastogenesis. 
In contrast to RANKL and RANK, whose expres- 
sion is mainly restricted at low levels to the skeletal 
and immune systems, OPG is expressed in a variety 
of tissues, such as liver, lung, heart, kidney, stom- 
ach, intestines, skin and calvaria in mice and lung, 
heart, kidney and placenta in human [102,195-201]. 
In bone, OPG is mainly produced by osteoblastic lin- 
eage cells and its expression increases as the cells 
become more differentiated [199,202,203]. Adminis- 
tration of recombinant OPG to normal rodents resulted 
in increased bone mass [102,196] and completely 
prevented ovariectomy-induced bone loss without 
apparent adverse skeletal and extraskeletal side effects 
[102]. In fact, based on this activity, the balance ratio 
of RANKL to OPG appears to be very important in 
controlling the overall activity (i.e., lysis vs no lysis) 
that will be observed [204-206]. 

A number of reports have shown that osteoclas- 
tic bone resorptive lesions are important to the devel- 
opment of bone metastases in several cancer types 
including breast cancer, lung cancer and prostate car- 
cinoma [207]. These cancers may induce osteoclast 
activity through secretion of IL-la, PTHrP or PGE2 
[208,209]. However, tumor-mediated osteolysis occurs 
indirectly through expression of molecules, such as 
PTHrP, that induce RANKL in osteoblasts [210,211]. 
This contrasts with the observations that giant cell 
tumors directly promote osteoclast activity via RANKL 
[212] and our observation that prostate carcinoma cells 
directly induce osteoclastogenesis through RANKL 
[76]. Another factor that may play a role in tumor- 
induced osteoclastogenesis is human macrophage 
inflammatory protein-la (hMIP-la), which has been 
shown to be produced by myeloma cells [213]. Because 
of the osteoclastic activity induced by many cancers, 
antiresorptive approaches such as administration of 
bisphosphonates or anti-PTHrP neutralizing antibody 
have been reported in breast cancer animal models to 
be able to block the tumor expansion in bone [214,215]. 

Furthermore, OPG has been recently shown to inhibit 
primary bone sarcoma-induced osteolysis and tumor- 
induced bone pain, but not tumor burden in mice 
[100]. However, OPG not only blocked osteolytic bone 
metastasis induced by human neuroblastoma NB-19 
cells [216], but also reduced tumor burden in that 
model. In addition to OPG, a soluble form of RANK 
(sRANK) has been shown to inhibit myeloma-induced 
lytic lesions in murine models [217]. 

4.2. Matrix metalloproteinases 

Matrix metalloproteinases (MMPs) are family of 
enzymes whose primary function is to degrade the 
extracellular matrix. MMPs contribute to metastatic 
invasion, including destruction of bone [218]. Prostate 
carcinomas and their cell lines express a large num- 
ber of MMPs [219-226]. The initial functional data 
in prostate carcinoma bone metastasis that suggested 
bone remodeling is modulated through MMPs was pro- 
vided by in vitro studies. Specifically, blocking MMP 
activity with 1,10-phenanthroline, a MMP inhibitor, 
diminished bone matrix degradation induced by PC-3 
cells in vitro [227,228]. The importance of MMPs in 
bone metastasis has been further confirmed in vivo. An 
MMP inhibitor, batimistat, has been shown to inhibit 
development bone resorption in vitro and in vivo in 
murine models of breast [229] and prostate carci- 
noma [230]. The mechanism through which prostate 
carcinoma-produced MMPs induce bone resorption is 
not clear; however, it appears to involve induction of 
osteoclastogenesis as inhibition of MMPs reduced the 
number of osteoclasts associated with prostate tumor 
growth in human bone implants in mice [230]. 

5. Conclusions 

A model summarizing the cross-talk between prostate 
carcinoma and the bone microenvironment that leads 
to development and progression of prostate carcinoma 
skeletal metastases is presented in Figure 1. The bone 
contributes many aspects of the metastatic cascade 
including chemotaxis, endothelial attachment, invasion 
and tumor proliferation. Once in the bone microenvi- 
ronment, the prostate carcinoma cells modulate bone 
remodeling which favors tumor progression. The pres- 
ence of many different active factors produced by both 
the bone and the prostate carcinoma cells that appear 
to contribute to the pathobiology of skeletal metastases 
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Skeletal Metastases 

Lamellar Bone Woven Bone 

Figure 1. Model of cross-talk between prostate carcinoma cells 
and the bone microenvironment. The bone produces chemotac- 
tic factors that attract prostate carcinoma cells to migrate (1) 
through the vascular system towards the skeleton. The bone mar- 
row endothelia displays adhesion molecules that complement 
those expressed by the prostate carcinoma cell, resulting in attach- 
ment of the cell (2). The prostate carcinoma cell extravasates and 
invades into the skeletal extracellular tissue (3), at which point it 
releases factors that stimulate osteoclastogenesis (4). The subse- 
quent bone resorption is accompanied by release of growth factors 
that stimulate prostate carcinoma proliferation (5). The progress- 
ing prostate carcinoma releases factors that promote osteoblast 
production and inhibit osteoblast apoptosis (6) resulting in pro- 
duction of woven bone and the characteristic osteosclerotic lesion. 
This process continues in a cyclical fashion with continued induc- 
tion of osteoclastic activity, carcinoma cell proliferation and bone 
production. 

suggests that defining the mechanisms of prostate car- 
cinoma skeletal metastases will be challenging. Con- 
tinued research on how these interactions occur may 
lead to identification of targets to interrupt this cross- 
talk and prevent the establishment or progression of 
prostate cancer skeletal metastases. 
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Summary 
Metastasis of prostate cancer to bone is a com- 

mon complication of progressive prostate cancer. 
Skeletal metastases are often associated with se- 
vere pain and thus demand therapeutic interven- 
tions. Although often characterized as osteoblastic, 
prostate cancer skeletal metastases usually have 
an underlying osteoclastic component. Advances 
in osteoclast biology and pathophysiology have led 
toward defining putative therapeutic targets to at- 
tack tumor-induced osteolysis. Several factors have 
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been found to be important in tumor-induced pro- 
motion of osteoclast activity. One key factor is the 
protein receptor activator of nuclear factor-icB lig- 
and (RANKL), which is required to induce osteo- 
clastogenesis. RANKL is produced by prostate can- 
cer bone metastases, enabling these metastases 
to induce osteolysis through osteoclast activation. 
Another factor, osteoprotegerin, is a soluble decoy 
receptor for RANKL and inhibits RANKL-induced 
osteoclastogenesis. Osteoprotegerin has been shown 
in murine models to inhibit tumor-induced osteolysis. 
In addition to RANKL, parathyroid hormone-related 
protein and interleukin-6 are produced by prostate 
cancer cells and can promote osteoclastogenesis. 
Finally, matrix metalloproteinases (MMPs) are se- 
creted by prostate cancer cells and promote oste- 
olysis primarily through degradation of the nonmin- 
eralized bone matrix. MMP inhibitors have beer 
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shown to diminish tumor establishment in bone in 
murine models. Thus, many factors derived from 
prostate cancer metastases can promote osteolysis, 
and these factors may serve as therapeutic targets. 

The importance of osteoclasts in the establish- 
ment and progression of skeletal metastases has 
led to clinical evaluation of therapeutic agents to 
target them for slowing metastatic progression. Bis- 
phosphonates are a class of compounds that de- 
crease osteoclast life span by promoting their apop- 
tosis. The bisphosphonate pamidronate has proven 
clinical efficacy for relieving bone pain associated 
with breast cancer metastases and has a promising 
outlook for prostate cancer metastases. Another 
bisphosphonate, zoledronic acid, appears to directly 
target prostate cancer cells in addition to diminish- 
ing osteoclast activity at the metastatic site. In addi- 
tion to bisphosphonates, other novel therapies based 
on studies that delineate mechanisms of skeletal 
metastases establishment and progression will be 
developed in the near future. © 2002 Prous Science. 
All rights reserved. 

Introduction 
Prostate cancer metastasizes to bone in over 

90% of men with progressive disease. Although pri- 
marily osteoblastic [i.e., induce mineralization in the 
skeletal metastatic site), prostate skeletal metas- 
tases always have an underlying osteoclastic com- 
ponent. Tumor-induced osteolysis often results in 
severe pain and pathologic bone fractures and thus 
is an important target for prostate cancer therapy. 
Recent advances in the biology of osteoclasts pro- 
vide clues to understanding the role of osteoclasts 
in cancer-induced bone lesions. Some of this re- 
search has led to clinical use of inhibitors of osteo- 
clast activity to reduce tumor-induced osteolysis 
and bone pain. In this review, we will summarize the 
biology of osteoclasts, proosteoclastic factors pro- 
duced by prostate cancer and therapeutic strategies 
designed to inhibit this painful aspect of cancer. 

Osteoclast biology 
Osteoclasts are derived from the colony-form- 

ing unit-granulocyte/macrophage hematopoietic 
precursor cells. The colony-forming unit-granulo- 
cyte/macrophage undergoes a defined progres- 
sion of maturation steps that ultimately result in fu- 
sion of the precursor cells into mature osteoclasts 
(Fig. 1). Several factors promote osteoclastogene- 
sis, including growth factors and cytokines. Both 

#-®-GKSH^ 
CFU-GM Promonocyte  Pre-OC 0C Activated OC 

Fig. 1. Cellular pathway for osteoclastogenesis. Abbrevia- 
tions: CFU-G/M, colony-forming unit-granulocyte/macro- 
phage; OC, osteoclast. 

colony-stimulating factor and interleukins-1 and -6 
(IL-1 and IL-6) expand the osteoclast precursor 
pool. Tumor necrosis factor (TNF)-a promotes con- 
version of the promonocyte to a committed osteo- 
clast precursor (1). 

Although several factors promote osteoclasto- 
genesis, one factor that is required for production 
of mature osteoclasts is receptor activator of nu- 
clear factor-KB ligand (RANKL). A member of the 
TNF family, RANKL is initially expressed by bone 
marrow stromal cells, osteoblasts and activated T 
cells. RANKL is most commonly a membrane-an- 
chored molecule; however, a small fraction of RANKL 
is released through proteolytic cleavage from the 
cell surface as a soluble 245-amino-acid homo- 
trimeric molecule (2). Both soluble and membrane- 
bound RANKL promote osteoclast formation and 
activation by binding to RANK on the osteoclast 
precursor membrane (Fig. 2) (2-6) that has the 
characteristics of a monocyte (7). RANKL binding 
to RANK induces NF-KB and Fos activation (8, 9). 
Several lines of evidence demonstrate RANKL's 
importance in osteoclastogenesis. For example, 
RANKL has been shown to induce osteoclasto- 
genesis in vitro from colony-forming unit-granulo- 
cyte/macrophage (10). Mice that are genetically 
engineered to overexpress RANKL or RANK are 
severely osteoporotic (11). Additionally, mice that 
have had their RANKL (12) or RANK (13) gene de- 
leted have no osteoclasts and are osteopetrotic. 

Osteoclast 

Promonocyte 

OPG 

Fig. 2. RANKL and OPG regulation of osteoclastogenesis. 
Abbreviations: RANKL, receptor activator of nuclear fac- 
tor-KB ligand. 
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In addition to RANKL and RANK, another key 
modulator of osteoclastogenesis is osteoprote- 
gerin (also known as osteoclastogenesis inhibitory 
factor) (14, 15). Osteoprotegrin serves as a decoy 
receptor that binds RANKL and thus blocks its abil- 
ity to bind to RANK and induce osteoclastogenesis. 
In contrast to RANKL and RANK, whose expres- 
sion is mainly restricted at low levels to the skele- 
tal and immune systems, osteoprotegrin is ex- 
pressed in a variety of tissues, such as liver, lung, 
heart, kidney, stomach, intestines, skin and cal- 
varia in mice, and lung, heart, kidney and placenta 
in humans (14, 16-21). In bone, osteoprotegrin is 
mainly produced by osteoblastic lineage cells and 
its expression increases as the cells become more 
differentiated (19, 22, 23). Several factors, includ- 
ing 1,25-dihydroxyvitamin D3, IL-1-ß, TNF-a and 
BMP-2, induce osteoprotegrin mRNA expression in 
human osteoblast cell lines (19). Administration of 
recombinant osteoprotegrin to normal rodents re- 
sulted in increased bone mass (14, 17) and com- 
pletely prevented ovariectomy-induced bone loss 
without apparent adverse skeletal and extraskeletal 
side effects (14). Additionally, a single subcuta- 
neous injection of osteoprotegrin is effective in ra- 
pidly and profoundly reducing bone turnover for a 
sustained period in women (24). In fact, based on 
this activity, the balance ratio of RANKL to osteo- 
protegrin appears to be very important in control- 
ling the overall activity (i.e., lysis vs. no lysis) that 
will be observed (11, 23, 25, 26). 

Once activated, osteoclasts resorb bone through 
secretion of a combination of proteases to resorb 
the nonmineralized matrix and acid to dissolve the 
hydroxyapatitic mineral (27). Proteases that are 
important mediators of osteoclastic activity include 
cathepsin K and metalloproteinases. Cathepsin K 
can cleave bone proteins such as type I collagen, 
osteopontin and osteonectin (28). Overexpression 
of cathepsin K in the mouse results in accelerated 
bone turnover (29), whereas knockout of cathep- 
sin K results in retarded bone matrix degradation 
and osteopetrosis (30). Several novel classes of 
cathepsin K inhibitors have been designed and may 
provide novel therapeutic agents to target bone re- 
sorption (31, 32). In addition to the proteases, acid 
is secreted from osteoclasts to resorb the mineral- 
ized matrix. Acid is believed to be secreted through 
vacuolar H(+)-ATPase-dependent pumps present 
on the osteoclast's ruffled membranes (33). 
Several hormones regulate acid secretion, includ- 
ing parathyroid hormone, which increases acid se- 

cretion and calcitonin, which in turn decreases acid 
secretion. Carbonic anhydrase II appears to be an 
important mediator of acid production because a- 
cetazolamide, a carbonic-anhydrase- inhibitor-based 
diuretic, can block bone resorption (34). Another di- 
uretic, indapamide, increased osteoblast prolifera- 
tion and decreased bone resorption, at least in part, 
by decreasing osteoclast differentiation via a direct 
effect on hematopoietic precursors in vitro (35). 
These findings suggest that targeting osteoclast- 
derived activity, in addition to targeting osteoclast 
production or survival, may provide therapeutic av- 
enues to diminish tumor-induced bone resorption. 

Receptor activator 
of nuclear factor-KB ligand 

As described above, RANKL is a key osteo- 
clastogenic factor. Several lines of evidence sup- 
port the role of RANKL in prostate cancer-mediat- 
ed osteolysis. Although a bone metastatic prostate 
cancer cell line has been shown to express osteo- 
protegrin (36), that same line overexpresses RAN- 
KL (37). Additionally, in normal prostate, osteopro- 
tegrin protein was detected in luminal epithelial and 
stromal cells (5%-65% and 15%-70%, respective- 
ly) and RANKL immunoreactivity was observed in 
15%-50% of basal epithelial cells, 40%-90% of lu- 
minal epithelial cells and 70%-100% of stromal 
cells (38). Osteoprotegrin was not detected in 8 of 
10 primary CaP specimens but RANKL was hetero- 
geneously expressed in 10 of 11 CaP specimens 
(38). Importantly, the percentage of tumor cells ex- 
pressing osteoprotegrin and RANKL was signifi- 
cantly increased in all CaP bone metastases com- 
pared with nonosseous metastases or primary CaP. 
Serum osteoprotegrin levels are elevated in pa- 
tients with advanced prostate cancer compared 
with less advanced prostate cancer (39). However, 
RANKL levels were not measured in that study, 
thus one cannot determine if the ratio of RANKL: 
osteoprotegrin was altered in these patients. It is 
possible that RANKL is only expressed locally at 
the skeletal metastatic site and therefore not de- 
tectable in the serum. Regardless, taken together, 
these observations suggest that the RANKLosteo- 
protegrin axis may play an important role in pros- 
tate cancer bone metastases. Further support for this 
possibility was demonstrated by the observation that 
administration of osteoprotegrin prevented establish- 
ment of prostate cancer cells in the bones of SCID 
mice, although it had no effect on establishment of 
subcutaneous tumors in the same mice (37). 
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Matrix metalloproteinases 
Matrix metalloproteinases (MMPs), a family of 

enzymes whose primary function is to degrade the 
extracellular matrix, play a role in bone remodeling. 
This activity occurs in the absence of osteoclasts 
(40), suggesting that MMPs have a direct resorptive 
effect. Several have the ability to degrade the non- 
mineralized matrix of bone including MMP-1, MMP-9 
and MMP-13, which are collagenases. Other MMPs, 
such as stromelysin (MMP-3), activate MMP-1. 
Through their proteolytic activity MMPs contribute to 
metastatic invasion, including destruction of bone (41). 

Prostate carcinomas and their cell lines ex- 
press a large number of MMPs (42-49). Levels of 
MMP-9 secretion in primary prostate cancer cultures 
increased with Gleason histological grade (44). 
Active MMP-9 species were detected in 15 cultures 
(31 %) of primary prostate cancer tissues. The pre- 
sence of the mineralized matrix has been shown to 
induce MMP-9 expression from prostate carcino- 
ma cells (50). 

The initial functional data that suggested pros- 
tate carcinoma bone metastasis modulated bone 
remodeling through MMPs was provided by in vitro 
studies. Specifically, blocking MMP activity with 
1,10-phenanthroline, an MMP inhibitor, diminished 
bone matrix degradation induced by PC-3 cells in 
vitro (51, 52). Matrilysin (MMP-7) has been shown 
to be up-regulated in DU-145 prostate cancer cells 
and can enhance their invasive ability. Monoclonal 
antibody targeting the cytokine interleukin-6 (IL-6) 
has been shown to increase promatrilysin expres- 
sion in DU-145 cultures (53). This suggests that IL- 
6, which is increased in prostate cancer (reviewed 
in 54), enhances prostate cancer invasion through 
production of MMP-7. 

The importance of MMPs in bone metastasis 
has been further confirmed in vivo. An MMP in- 
hibitor, batimastat, has been shown to inhibit de- 
velopment of bone resorption in vitro and in vivo in 
murine models of breast (55) and prostate carcino- 
ma (56). The mechanism through which prostate- 
carcinoma-produced MMPs induce bone resorption 
is not clear; however, it appears to involve induction 
of osteoclastogenesis, as inhibition of MMPs re- 
duced the number of osteoclasts associated with 
prostate tumor growth in human bone implants in 
mice (56). Additionally, the bisphosphonate alen- 
dronate blocked MMP production from PC-3 cells 
(57). This was associated with diminished estab- 
lishment of bone metastasis in mice injected with 
PC-3 tumors (40). 

Parathyroid hormone-related protein 
Parathyroid hormone-related protein (PTHrP), 

a protein with limited homology to parathyroid hor- 
mone, was originally identified as a tumor-derived 
factor responsible for humoral hypercalcemia of ma- 
lignancy. Parathyroid hormone and PTHrP bind to 
the same receptor (the parathyroid hormone-1 re- 
ceptor) and evoke the same biological activity due 
to similarities in their steric configurations at the re- 
gion of 25-34 amino acids. Patients with solid tu- 
mors and hypercalcemia have increased serum 
PTHrP in 80% of the cases, emphasizing the im- 
pact of this peptide to increase bone resorption and 
renal tubular resorption of calcium (58). Subse- 
quent to its characterization in humoral hypercal- 
cemia of malignancy, PTHrP was found to be pro- 
duced by many normal tissues, including epitheli- 
um, lactating mammary gland and cartilage, where 
it has an autocrine, paracrine or intracrine role (58). 

PTHrP is an attractive candidate for influencing 
prostate carcinoma growth. PTHrP is produced by 
normal prostate epithelial cells, from which prostate 
carcinoma arises, and PTHrP is found in the semi- 
nal fluid (59, 60). PTHrP has been immunohisto- 
chemically identified in prostate carcinoma tissue 
in patients with clinically localized disease (61), is 
found in higher levels in prostate intraepithelial neo- 
plasia than in normal prostate epithelium, is found 
in higher levels in prostate carcinoma than in be- 
nign prostatic hyperplasia (62, 63) and is found in 
human metastatic lesions in bone (64). However, in 
some studies, expression of PTHrP receptor in 
prostate cancer appears to be more consistent than 
expression of PTHrP itself (65). Overexpression of 
ras oncogene in immortalized prostate epithelial 
cells has been shown to promote PTHrP expres- 
sion (66). This may account for the increased ex- 
pression of PTHrP as the cells progress to a ma- 
lignant phenotype. 

There is evidence that PTHrP can regulate ma- 
lignant tumor growth in an autocrine manner in hu- 
man renal cell carcinoma (67), enhance breast 
cancer metastasis to bone (68, 69) and act as an 
autocrine growth factor for prostate carcinoma cells 
in vitro (59), although it does not effect proliferation 
of normal prostate cells (70). Recent evidence in- 
dicates that expression of nuclear-targeted PTHrP 
can protect prostate and other cells from apoptosis 
(64, 71), bind RNA (72) and act as a mitogen (73, 
74). PTHrP production by primary prostatic tumors 
is associated with increased tumor size and rate of 
growth in an animal model (64), suggesting that 

7 



ET. Keller 

PTHrP acts in an autocrine or intracrine mecha- 
nism to promote tumor growth. In contrast, in this 
same model and in an intracardiac injection model 
of prostate carcinoma, PTHrP was not associated 
with an increase in metastatic potential (64, 75). 
This suggests that PTHrP is not important in the 
process of metastasis to bone, but once in the bone 
microenvironment where target cells with receptors 
are present (osteoblasts), it may play a critical role 
in the bone response to prostate carcinoma. Of 
particular interest to prostate carcinoma, prostate 
specific antigen has been shown to cleave PTHrP 
leading to an inactivation of the PTHrP-stimulation 
of cAMP, which is a key pathway for the actions of 
PTHrP in bone (76). Overexpression of PTHrP in 
prostate cancer cells has been shown to induce os- 
teolytic lesions in the bone of rats (77), although the 
level of expression may not directly correlate with the 
degree of osteolysis (75). All these data suggest that 
PTHrP has a critical role in the local bone microenvi- 
ronment of metastatic prostate carcinoma, but this 
precise role is yet to be determined. 

lnterleukin-6 
IL-6 belongs to the "interleukin-6-type cytokine" 

family that also includes leukemia inhibitory factor, 
interleukin-11, ciliary neurotrophic factor, cardio- 
trophin-1 and oncostatin M (78). Many physiologic 
functions are attributed to IL-6, including promotion 
of antibody production from B lymphocytes, modu- 
lation of hepatic acute-phase reactant synthesis, 
promotion of osteoclastic mediated bone resorp- 
tion and induction of thrombopoiesis (79). IL-6 me- 
diates its activity through the IL-6 receptor com- 
plex, which is composed of two components: an 80 
Kd transmembrane receptor (IL-6Rp80, IL-6R, a-sub- 
unit) that specifically binds IL-6 but has no sig- 
naling capability and a 130 Kd membrane glyco- 
protein (gp130) that mediates signal transduction 
following IL-6R binding (80). In addition to the 
transmembrane IL-6R, a soluble form of IL-6R ex- 
ists that is produced by either proteolytic cleavage 
of the 80 kDa subunit (81, 82) or differential splic- 
ing of mRNA (83). Although the soluble IL-6R does 
not possess a transmembrane component, it can still 
bind to IL-6, and the ligand-bound soluble IL-6R-IL- 
6 complex activates signal transduction and biologi- 
cal responses through membrane-bound gp130 (84). 

Multiple studies have demonstrated that IL-6 is 
elevated in the sera of patients with metastatic 
prostate cancer (85-87). Adler et al. (85) demon- 
strated that serum levels of IL-6 and transform- 
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ing growth factor-ß1 are elevated in patients with 
metastatic prostate cancer and that these levels 
correlate with tumor burden as assessed by serum 
prostate-specific antigen or clinically evident metas- 
tases. In a similar fashion, Drachenberg et al. (88) 
reported elevated serum IL-6 levels in men with 
hormone-refractory prostate cancer compared with 
normal controls, benign prostatic hyperplasia, pro- 
statitis and localized or recurrent disease. In an an- 
imal model, prostate tumor cells injected next to 
human bones implanted in the limb of mice demon- 
strated IL-6 expression (89). In addition to IL-6, the 
IL-6R has been identified in human normal pros- 
tate and prostate carcinoma tissue (90, 91). 

The secretion of IL-6 by prostate cancer cells in 
the bone microenvironment may impact bone re- 
modeling (reviewed in 92, 93). IL-6 promotes os- 
teoclastogenesis (94-96) most likely through in- 
creasing osteoclastogenic precursors. IL-6-mediat- 
ed osteoclastogenesis is directly related to the level 
of gp130 present on the precursor cells (97). It ap- 
pears that IL-6-mediated osteoclastogenesis is inde- 
pendent of promoting RANKL expression (98). Ho- 
wever, IL-6 has been shown to potentiate PTHrP-in- 
duced' osteoclastogenesis (99, 100). Administration 
of anti-IL-6 antibody has been shown to diminish 
growth of subcutaneously injected prostate cancer 
cells in nude mice, thus demonstrating the potential 
utility of this compound in clinical prostate cancer 
(101). These results strongly suggest that IL-6 may 
serve as a therapeutic target for the osteolytic com- 
ponent of prostate cancer skeletal metastases. 

Therapy of cancer-associated osteolysis 
Bone metastases are associated with several 

clinical sequelae, including bone pain, neuralgia, 
pathologic bone fracture and myelophthisis. Thus, 
targeting these lesions has received much research 
effort. Bisphosphonates are a group of chemicals 
that inhibit osteoclast activity resulting in decreased 
bone resorption and thus have received much at- 
tention as inhibitors of clinical complications of bone 
metastases (102-104). Bisphosphonates work di- 
rectly on osteoclasts to induce their apoptosis (105, 
106). Animal studies have demonstrated that bisphos- 
phonates can diminish tumor-induced osteoclasto- 
genesis and osteolysis (107-111); although in some 
instances it appears to only reduce tumor-induced ly- 
sis but not tumor burden (112). Studies in breast can- 
cer and myeloma patients have shown that these 
agents markedly inhibit the progression of bone dis- 
ease, resulting in improved survival and decreased 
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morbidity from bone pain and fracture (113,114). These 
results have led to their incorporation into standard 
treatment regimens for skeletal metastases associ- 
ated with these cancers. 

In addition to inhibiting osteoclast survival, bis- 
phosphonates may have direct effects on tumor cells 
(115). For example, several bisphosphonates in- 
duce apoptosis in myeloma cells (116-118). How- 
ever, this is not the case for all bisphosphonates 
(119). In addition to inducing apoptosis, bisphos- 
phonates have been shown to inhibit breast carci- 
noma cell adhesion to bone (120). Furthermore, 
alendronate blocked collagen degradation and MMP 
release from prostate cancer cells (57,121). Taken 
together, these findings suggest that bisphospho- 
nate action is not limited to inhibition of osteoclasts. 

Studies of bisphosphonates use in patients with 
prostate cancer skeletal metastases have general- 
ly shown a decrease in bone pain, although some 
studies have shown no benefit (122-124). A recent 
randomized study of the oral bisphosphonate clo- 
dronate showed an encouraging decrease in the 
rate of progression to symptomatic bone metas- 
tases in men with prostate cancer (125). Consis- 
tent with this observation is the finding that zole- 
dronic acid, a third generation bisphosphonate, has 
demonstrated significantly increased activity in pre- 
clinical models when compared with early agents in 
this class. Exposure of prostate cancer cell lines to 
zoledronic acid results in marked inhibition of cell 
proliferation, suggesting that this agent may have a 
direct antitumor effect beyond its ability to inhibit 
osteoclast activity (126, 127). Zoledronic acid also 
has been shown to inhibit the invasion of prostate 
carcinoma cell lines in vitro (128). Clinical studies 
have demonstrated efficacy in treating humoral hy- 
percalcemia of malignancy, leading to recent U.S. 
FDA approval for use in this clinical setting (129). 
Treatment with zoledronic acid results in a signifi- 
cant and sustained decrease in markers of bone 
metabolism. 

Conclusions 
Prostate cancer skeletal metastases promote 

osteolysis through several mechanisms that in- 
clude both activation of osteoclast-mediated bone 
resorption and direct resorption on nonmineralized 
bone matrix (Fig. 3). Delineating the mechanisms 
that promote prostate cancer skeletal metastasis 
and the interactions between metastatic prostate 
cancer cells and bones should lead to develop- 
ment of therapies that will diminish or prevent 

Fig. 3. Mechanisms of prostate cancer metastases-medi- 
ated osteolysis. Abbreviations: IL-6, interleukin-6; PTHrP, 
parathyroid hormone-related protein; RANKL, receptor 
activator of nuclear factor-icB ligand; MMPs, matrix metal- 
loproteinases. 

these events. Our current understanding of the bi- 
ology of prostate cancer skeletal metastases has 
led to identification of several putative targets and 
therapies aimed at these targets, some of which 
are currently in clinical trials at the time of this writ- 
ing. Continued research into the biology of prostate 
cancer skeletal metastases should enable devel- 
opment of improved therapeutic regimens to dimin- 
ish this painful aspect of prostate cancer. 
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Interleukin-6 and androgen receptor cofactors in prostate cancer xenografts and cell 
lines 

Peter C. Smith, Susan Korenchuk, Kenneth J. Renta, Evan T. Keller, University of Michigan, Ann 
Arbor, MI. 

A variety of growth factors may contribute to the progression of prostate cancer (CaP). Elevation of 
serum levels of one putative CaP growth factor, interleukin-6 (IL-6), has recently been associated with 
advanced prostate cancer in patients. IL-6 and its receptor have also been demonstrated in a number of 
established CaP cell lines and in CaP samples from patients. Furthermore, IL-6 has been demonstrated 
to activate the androgen receptor (AR) in the absence of androgen in CaP cell lines. Taken together, 
these data suggest that IL-6 may contribute to CaP progression through promotion of androgen 
independence. The goal of the current study was to determine the presence of IL-6 and its receptor 
components in CaP xenografts (XG). Additionally, we sought to determine if IL-6 influenced the levels 
of AR co-factors because of its ability to stimulate an androgen response in the absence of androgens. 
CaP XG were established from either primary tumor or metastases obtained within 2 hours of the 
patients' death (i.e. rapid autopsy program). Homogenates were made from the XG and subjected to 
ELISA for determination of IL-6, soluble IL-6 receptor (sIL6R), and gpl30 levels. ELISA values were 
normalized for total protein in the sample. To determine the influence of IL-6 on AR co-factor levels, 
several CaP cell lines (LNCaP, C4-2B and VCaP) were incubated with IL-6 (25 ng/ml) for 24 h, then 
total cell extract was subjected to Western analysis for determination of various AR cofactor levels. We 
evaluated a total of 9 XG from the following sites: prostate (n=l); dura (n=2); lymph node (n=2); 
sphenoid (n=l); femur (n=l); rib (n=l); and liver (n=l). IL-6 was detected in dura (n=l), liver, and both 
lymph node XG (range: 0.231- 32.8 pg/ng total protein). sIL-6R was detected in all XG except the 
prostate and femur (range: 91-281 pg/ng total protein). gpl30 was detected in all XG (range: 8.24-1762 
pg/ng total protein). Addition of IL-6 to CaP cell lines did not significantly change total levels of the AR 
cofactors, SRC1, TIF2, or AIB1. These data further demonstrate the presence of IL-6 and its receptor in 
CaP. They also suggest that IL-6 may be expressed in only a subset of metastatic sites, suggesting that it 
may contribute to target organ specificity. The observation that IL-6 did not alter AR cofactor levels 
suggests that IL-6 alters association of AR cofactors with the AR (as opposed to increasing cofactors) or 
that IL-6 activates AR independent of modulating AR cofactors. We conclude that the presence of IL-6 
in XG and its previously demonstrated ability to activate AR lend further evidence that it contributes to 
the progression of CaP. 
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Osteoblastic characteristics of a panel of xenografts derived from primary and 
metastatic prostate cancer lesions 

Susan Korenchuk, Kenneth J. Pienta, Carlton R. Cooper, Evan T. Keller, University of Michigan, 
Ann Arbor, MI. 

Defining molecules to target prostate cancer is dependent on cellular models of prostate cancer that 
reflect the pathophysiology of prostate cancer. Here we report the characterization of a panel of prostate 
cancer xenografts that are derived from primary tumor and metastatic sites (bone, dura and liver). All 
xenografts produced PSA in the serum of the host SCID mice. Tumors from bone, and dural metastatic 
lesions harvested from SCID mice stained with hematoxylin-eosin display adenocarcinoma histology. 
Because of the osteoblastic nature of prostate cancer, we evaluated the expression of bone 
morphogenetic protein 2 (BMP-2), which induces osteoblastogenesis. Western blot analysis revealed 
that BMP-2 was detected highest in a rib metastasis xenograft, but found to a lesser degree in the dural 
and primary prostate tumor xenografts. We have previously demonstrated that prostate cancer cells 
acquire an osteoblastic-phenotype, including expression of the osteoblast-specific transcription factor 
Cbfal. Western analysis revealed that all xenografts express the osteoblast marker Cbfal. The highest 
level was found in a xenograft derived from a metastatic lesion to the rib of a patient. These results 
indicate that there is variability in the expression of osteoblastic characteristics of xenografts derived 
from different metastatic lesions and primary tumors. This suggests that the xenografts could serve as a 
useful tool in the study of preferential metastasis to bone in prostate cancer, and subsequent bone 
remodeling. 
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